
Sample results. Actual results may vary

	REDORT STATUS:	FINAL	
		I 114711	
	ORDERING PHYSICIAN		
	CLIENT INFORMATION		
		SA	
	L A	B S	
	Order Today		
	www.accesalabs.com/fertility		
'lag	Reference Range	Lab	
		$\langle \rangle$	
WO	30-100 ng/mL	01	
	ng/mL	01	
	ng/mL	01	
	mIU/L	02	
	4 5-12 0 mag/dt	0.2	
	4.5-12.0 mcg/dL	02	
	4.5-12.0 mcg/dL 1.4-3.8	02 02	
	1.4-3.8		
	5.	02	
	1.4-3.8	02	
	1.4-3.8 0.8-1.8 ng/dL	02	
	1.4-3.8 0.8-1.8 ng/dL 3.8-10.8 Thousand/uL	02 02 02	
	1.4-3.8 0.8-1.8 ng/dL 3.8-10.8 Thousand/uL 3.80-5.10 Million/uL	02 02 02 02 02	
	1.4-3.8 0.8-1.8 ng/dL 3.8-10.8 Thousand/uL 3.80-5.10 Million/uL 11.7-15.5 g/dL	02 02 02 02 02 02	
	1.4-3.8 0.8-1.8 ng/dL 3.8-10.8 Thousand/uL 3.80-5.10 Million/uL 11.7-15.5 g/dL 35.0-45.0 %	02 02 02 02 02 02 02	
	1.4-3.8 0.8-1.8 ng/dL 3.8-10.8 Thousand/uL 3.80-5.10 Million/uL 11.7-15.5 g/dL 35.0-45.0 % 80.0-100.0 fL	02 02 02 02 02 02 02 02 02	
	1.4-3.8 0.8-1.8 ng/dL 3.8-10.8 Thousand/uL 3.80-5.10 Million/uL 11.7-15.5 g/dL 35.0-45.0 % 80.0-100.0 fL 27.0-33.0 pg	02 02 02 02 02 02 02 02 02 02	
	1.4-3.8 0.8-1.8 ng/dL 3.8-10.8 Thousand/uL 3.80-5.10 Million/uL 11.7-15.5 g/dL 35.0-45.0 % 80.0-100.0 fL 27.0-33.0 pg 32.0-36.0 g/dL	02 02 02 02 02 02 02 02 02 02 02 02	
OW	1.4-3.8 0.8-1.8 ng/dL 3.8-10.8 Thousand/uL 3.80-5.10 Million/uL 11.7-15.5 g/dL 35.0-45.0 % 80.0-100.0 fL 27.0-33.0 pg 32.0-36.0 g/dL 11.0-15.0 % 140-400 Thousand/uL 7.5-11.5 fL	02 02 02 02 02 02 02 02 02 02 02 02 02	
OW	1.4-3.8 0.8-1.8 ng/dL 3.8-10.8 Thousand/uL 3.80-5.10 Million/uL 11.7-15.5 g/dL 35.0-45.0 % 80.0-100.0 fL 27.0-33.0 pg 32.0-36.0 g/dL 11.0-15.0 % 140-400 Thousand/uL 7.5-11.5 fL 1500-7800 cells/uL	02 02 02 02 02 02 02 02 02 02 02 02 02 0	
OW	1.4-3.8 0.8-1.8 ng/dL 3.8-10.8 Thousand/uL 3.80-5.10 Million/uL 11.7-15.5 g/dL 35.0-45.0 % 80.0-100.0 fL 27.0-33.0 pg 32.0-36.0 g/dL 11.0-15.0 % 140-400 Thousand/uL 7.5-11.5 fL 1500-7800 cells/uL 0-750 cells/uL	02 02 02 02 02 02 02 02 02 02 02 02 02 0	
OW	1.4-3.8 0.8-1.8 ng/dL 3.8-10.8 Thousand/uL 3.80-5.10 Million/uL 11.7-15.5 g/dL 35.0-45.0 % 80.0-100.0 fL 27.0-33.0 pg 32.0-36.0 g/dL 11.0-15.0 % 140-400 Thousand/uL 7.5-11.5 fL 1500-7800 cells/uL 0 cells/uL	02 02 02 02 02 02 02 02 02 02 02 02 02 0	
OW	1.4-3.8 0.8-1.8 ng/dL 3.8-10.8 Thousand/uL 3.80-5.10 Million/uL 11.7-15.5 g/dL 35.0-45.0 % 80.0-100.0 fL 27.0-33.0 pg 32.0-36.0 g/dL 11.0-15.0 % 140-400 Thousand/uL 7.5-11.5 fL 1500-7800 cells/uL 0 cells/uL 0 cells/uL	02 02 02 02 02 02 02 02 02 02 02 02 02 0	
OW	1.4-3.8 0.8-1.8 ng/dL 3.8-10.8 Thousand/uL 3.80-5.10 Million/uL 11.7-15.5 g/dL 35.0-45.0 % 80.0-100.0 fL 27.0-33.0 pg 32.0-36.0 g/dL 11.0-15.0 % 140-400 Thousand/uL 7.5-11.5 fL 1500-7800 cells/uL 0 cells/uL 0 cells/uL 0 cells/uL	02 02 02 02 02 02 02 02 02 02 02 02 02 0	
OW	1.4-3.8 0.8-1.8 ng/dL 3.8-10.8 Thousand/uL 3.80-5.10 Million/uL 11.7-15.5 g/dL 35.0-45.0 % 80.0-100.0 fL 27.0-33.0 pg 32.0-36.0 g/dL 11.0-15.0 % 140-400 Thousand/uL 7.5-11.5 fL 1500-7800 cells/uL 0 cells/uL 0 cells/uL	02 02 02 02 02 02 02 02 02 02 02 02 02 0	
	rlag .cw	ORDERING PHYSICIAN CLIENT INFORMATION ACCES Order Today www.accesalabs.com/ Plag Reference Range	

Sample results. Actual results may vary

disclosure of the information without the specific written consent of the person to whom it pertains, or as otherwise permitted by law. A general authorization for the release of medical or other information is NOT sufficient for this purpose.

The performance of this assay has not been clinically validated in patients less than 2 years old.

FSH				
FSH		4.9	mIU/mL	02
	Reference			
	Follicular Phas	e 2.5-10.2		
	Mid-cycle Peak	3.1-17.7		
	Luteal Phase	1.5- 9.1		
	Postmenopausal	23.0-116.3		
LH				
LH		11.8	mIU/mL	02
Re	ference Range			
Follic	ular Phase 1.9-12.5			
Mid-Cy	cle Peak 8.7-76.3			
Luteal	Phase 0.5-16.9			
Postme	nopausal 10.0-54.7			
PROGESTERONE				
PROGESTERON		<0.5	ng/mL	02
	Reference Ranges	;		
	Female			
	Follicular Phase			
	Luteal Phase	2.6-21.5		
	Post menopausal	< 0.5		
	Pregnancy			
	lst Trimester	4.1-34.0		
	2nd Trimester	24.0-76.0		
	3rd Trimester	52.0-302.0		
PROLACTIN				
PROLACTIN		10.7	ng/mL	02
	Reference Range			
Femal		2 2 2 2 2		
	Non-pregnant	3.0-30.0		
		0.0-209.0		
	Postmenopausal	2.0-20.0		
ESTRADIOL				
ESTRADIOL		41	~~ /mT	02
	Reference Range	1 1	pg/mL	UΖ
	Follicular Phase:	19-144		
	Mid-Cycle:	19-144 64-357		
	Luteal Phase: Postmenopausal:	56-214 < or = 31		
	rostmenopausa1.	< UT = 21		

Sample results. Actual results may vary

TESTOSTERONE, TOTAL	, LC/MS/MS 7	1	HIGH	2-45 ng/dL	01
FREE TESTOSTERONE	1	1.9	HIGH	0.1-6.4 pg/mL	01
NTI MULLERIAN HORMO	NE ASSESSR(TM)				
ANTI MULLERIAN HORM	ONE ASSESSR(TM) 1	0.87		ng/mL	03
REFERENCE F	ANGES for AMH/MIS	:			
	Age	Expected range	e		
		(ng/mL)			
Female:	<14 yrs		-		
	14-19 yrs	1.28-16.37			
	20-29 yrs	0.76-11.34			
	30-39 yrs	<9.24			
	40-49 yrs	<4.50			
	> 49 yrs	<0.45			
Male:	<1 yr	37.20-345.6	57		
	1-6 yrs	59.54-320.6	55		
	7-11 yrs	40.99-203.6	57		
	12-17 yrs	<128.29			
	> 17 yrs	1.15-15.23			
			2		
RPR (DX) W/REFL TITE	R AND CONFIRMATOR	TESTING			
RPR (DX) W/REFL TIT		ON-REACTIVE		NON-REACTIVE	02
BO GROUP AND RH TYP	E				
ABO GROUP	В				02
RH TYPE	R	H(D) POSITIVE			02

Performing Laboratory Information:

200